

DOWNLOAD

Entropy Based Design and Analysis of Fluids Engineering Systems (Hardback)

By Greg F. Naterer, Jose A. Camberos

Taylor Francis Inc, United States, 2008. Hardback. Book Condition: New. New.. 236 x 157 mm. Language: English . Brand New Book. From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow processes, ranging from optimized flow configurations in an aircraft engine to highly ordered crystal structures in a turbine blade. Entropy Based Design of Fluid Engineering Systems provides an overview of EBD as an emerging technology with applications to aerospace, microfluidics, heat transfer, and other disciplines. The text extends past analytical methods of Entropy Generation Minimization to numerical simulations involving more complex configurations and experimental measurement techniques. The book begins with an extensive development of basic concepts, including the mathematical properties of entropy and exergy, as well as statistical and numerical formulations of the second law. It then goes on to describe topics related to incompressible flows and the Second Law in microfluidic systems. The authors develop computational and experimental methods for identifying problem regions within a ...

Reviews

I actually began looking at this pdf. It is actually rally interesting throgh reading time period. You will not really feel monotony at at any time of your respective time (that's what catalogues are for concerning if you ask me). -- Brayan Mohr Sr.

A superior quality publication along with the font used was fascinating to learn. I have read through and i also am certain that i am going to going to go through yet again again in the future. Your life period will likely be enhance the instant you total reading this publication.

-- Donnie Rice